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ABSTRACT 
The damping evaluation of floating offshore systems is 

based on the viscous effects that are not considered in 
numerical models using the potential theory. Usually, different 
techniques for different systems are used to evaluate these 
hydrodynamic coefficients. The total damping is separated by 
potential and viscous damping, the first one is evaluated 
numerically and the second through experiments at reduced 
scale model. Common techniques considering linear motion 
equations cannot be applied to all degrees of freedom. Some 
methods were compared for results of decay test, such as: 
exponential and quadratic fit. Fourier transform (FT) spectral 
analysis and Hilbert Huang transform (HHT) can be used to 
evaluate the signal natural frequency and with HHT this can be 
done during the time domain. Also, analysis through the 
Random Decrement Technique (RDT) is presented to 
demonstrate the damping evaluation for irregular waves. The 
method to obtain external damping was presented for the 
different techniques in an ITTC semi-submersible model. The 
linear method is not sufficient to predict the damping 
coefficient for all the cases, because in most of them, the 
viscous damping was better represented by a quadratic fit. The 
HHT showed to be a good alternative to evaluate damping in 
non-linear systems. 
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NOMENCLATURE 

 added mass matrix  ܣ
 ଵ  linear component of dampingܤ
 ଶ quadratic component of the viscous dampingܤ 

matrix 
 ௖௥௜௧ critical dampingܤ
 ௘௫௧  viscous (external) damping matrixܤ
 ௉௢௧ potential damping matrixܤ 
 stiffness matrix  ܥ
 ௘௫௧ external forces vectorܨ  
 mass matrix  ܯ
ܵ  power spectrum energy 

ௗܶ  damped natural period 
 displacement vector  ݔ
ሶݔ   velocity vector 
ሷݔ   acceleration vector 
 ҧ  mean displacementݔ
 ଴  initial displacement conditionݔ
 ௞  amplitude of the peak kݔ
 logarithmic decrement  ߜ
߱ௗ  damped natural frequency 
߱௡  natural frequency 
 linear damping coefficient (percentage of  ߞ

critical damping) 
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1. INTRODUCTION 
As a rule, damping forces are some of the most important 

issues to be correctly consider in the motion evaluation on 
offshore structures. Numerical codes, based on wave potential 
theory, can accurately estimate the potential forces but not the 
viscous one, once it does not solve the complete Navier-Stokes 
equation. Commonly, codes in Computational Fluid Dynamic 
(CFD) predispose to take into account this viscous component 
but due to free surface effects they are not so efficient to 
evaluate it correctly. This reason gives rise to the need of model 
tests to evaluate the viscous effects and the need to choose the 
best method to define the damping coefficients.  

The common test used by designers to obtain the viscous 
damping coefficient is a free oscillation test in which the decay 
signal is analyzed. Depending on the system, the linear or non-
linear motion equation can be applied to evaluate the viscous 
components. Another usual test for floating units is an irregular 
wave test in which it is possible to evaluate the damping 
coefficients using the Random Decrement Technique (Yang et 
al., 1985). Both signals from free oscillation test and irregular 
wave test can be analyzed using complementary techniques 
such as the spectral analysis using the Fourier Transform (FT), 
used to determine the natural period, and the Hilbert-Huang 
Transform method (HHT) developed by (Huang et al., 1998), 
which can be used to determine the instantaneous frequency 
and motion amplitude in time. 

In the offshore scenario, the difficulty to consistently 
determine the contribution of viscous damping component was 
shown by some authors. (Malta et al., 2006) demonstrated the 
influence of each term of the viscous damping matrix in the 
coupled motions between the monocolumn platform and the 
water inside its moonpool. In another work, (Malta et al., 2009) 
presented results from non-linear damping effects in the design 
of a FPSO and a TLWP at a small distance. 

Finally, (Rateiro et al., 2010) showed the free oscillation 
and irregular wave tests for ITTC - SR192 scaled model 
coupled with riser lines, with and without current. Different 
damping coefficients were used to explain the riser and current 
influence on the unit motion. Thus, using these tests, the 
present paper shows different methods to evaluate the damping 
coefficients.  

In the Section 2 the theoretical background for the methods 
is presented. Section 3 shows examples of decay tests signals 
and the development of the damping coefficients for each 
different method. Finally, Section 4 presents the discussion and 
conclusion about the applied methods. 

 
2. THEORETICAL BACKGROUND 

The non-linear motion equation for a floating unit can be 
written as: 
 

ሺܯ ൅ ሷݔሻܣ ൅ ሺܤ௘௫௧ ൅ ሶݔ௉௢௧ሻܤ ൅ ሶݔଶܤ ሶݔ| | ൅ ݔܥ ൌ  ௘௫௧ (1)ܨ

 
where: ܯ is the mass matrix (6x6), ܣ is the added mass matrix, 
 ଶ are damping coefficients matrix related to viscousܤ ௘௫௧ andܤ

damping,  ܤ௉௢௧ is the potential damping matrix, ܥ is the 
stiffness matrix and   ܨ௘௫௧ is the vector of external forces. The 
terms ݔ ,ݔሶ  and ݔሷ  are displacement, velocity and acceleration 
vector, respectively, for each degree of freedom. 

Matrix A and  ܤ௉௢௧ so that ܨ௘௫௧ can be provided by a 
numerical code based on the potential theory. Matrix C is 
composed by hydrostatic and line restoring forces. To 
completly evalute equation (1), the external damping, ܤ௘௫௧ 
and ܤଶ still need to be evaluated. These parameters, in general, 
are obtained from model tests and different methods to 
estimate the viscous damping are explained below. 

Linear Damping 
The most common way to determine the viscous damping 

is through free decay tests. The equation of motions for the free 
decay tests, considering only the linear damping and no 
external forces, is a simplification of Equation (1) as: 

 

ሺܯ ൅ ሷݔሻܣ ൅ ሶݔଵܤ ൅ ݔܥ ൌ 0 (2) 

 
where the sum between ܤ௘௫௧ and ܤ௉௢௧ can be written as ܤଵ. 
This equation is linear and can be written in non-dimensional 
form as: 
 

ሷݔ ൅ ሶݔ௡߱ߞ2 ൅ ߱௡
ଶݔ ൌ 0 (3) 

 
where ߞ is a percentage of critical damping ܤ௖௥௜௧ (ܤ=ߞଵ ⁄௖௥௜௧ܤ ) 
and ߱௡ is the natural frequency of the motion (߱௡ ൌ
ඥܥ ሺܯ ൅ ⁄ሻܣ  ). Equation (2) is linear and its solution can be 
written as: 
 

ݔ ൌ ଴݁ି఍ఠ೙௧ݔ cos ඥ1 െ  (4) ݐଶ߱௡ߞ

 
where ݔ଴ is the initial condition of motion. A exponential fitted 
curve can be adjusted through the amplitude peaks ݔ௞, the 
parameters a and b from exponential fit can be found as: 
 

ݔ ൌ ଴݁ି఍ఠ೏௧ݔ ൌ ܽ݁ି௕௧ (5) 

 
where ߱ௗ is the damped natural frequency obtained from the 
oscillations of free decay tests. Thus, the natural frequency ߱௡ 
can be written as: 
 

߱௡ ൌ ߱ௗ/ඥ1 െ  ଶ (6)ߞ

 

Linear Damping for Different Amplitudes 
The damping level can vary for different amplitudes, i.e. 

 ሻ. This fact can occur because the viscous damping has aݔଵሺܤ
quadratic behavior (or non-linear) or even in cases of non-
linear stiffness of the system. The equation below should be 
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used to represent these situations, in which the damping 
coefficient is defined in terms of the amplitude motion ݔ. 
 

ሺܯ ൅ ሷݔሻܣ ൅ ሶݔሻݔଵሺܤ ൅ ݔܥ ൌ 0 (7) 

 
or in the non-dimensional form as: 
 

ሷݔ ൅ ሶݔሻ߱௡ݔሺߞ2 ൅ ߱௡
ଶݔ ൌ 0 (8) 

 
The relation between the logarithmic decrement ߜ and the 

damping coefficient can be demonstrated below. 
 

ҧݔ ൌ
௞ݔ ൅ ௞ାଵݔ

2
 (9) 

ߜ ൌ lnݔ௞ െ lnݔ௞ାଵ (10) 

cos ߱ௗݐ ൌ 1 ՜ ݐ ൌ ߱ௗ ௗܶ݇ (11) 

ߜ ൌ ln ሺݔҧ݁ି఍ఠ೏்೏௞ሻ െ ln ሺݔҧ݁ି఍ఠ೏்೏ሺ௞ାଵሻሻ (12) 

ߜ ൌ ln ሺݔҧ݁ି఍ଶగ௞/ݔҧ݁ି఍ଶగሺ௞ାଵሻሻ (13) 

ߜ ൌ  (14) ߨҧሻ2ݔሺߞ

ҧሻݔሺߞ ൌ  (15) ߨ2/ߜ

where ௗܶ is the damped natural oscillation period (note in this 
case the damped natural period is kept constant). 

Quadratic Damping 
The floating unit dynamic can present a non-linear 

behavior due to the damping forces. Studies have shown that 
the quadratic equation (16) is more appropriated to represent 
the viscous damping forces.  
 

ሺܯ ൅ ሷݔሻܣ ൅ ሶݔଵܤ ൅ ሶݔଶܤ ሶݔ| | ൅ ݔܥ ൌ 0 (16) 

 
or in other form as: 
 

ሷݔ ൅ ሶݔ௡߱ߞ2 ൅
ଶܤ

ܯ ൅ ܣ
ሶݔ ሶݔ| | ൅  ߱௡

ଶݔ ൌ 0 (17) 

 
For evaluating the term ܤଶ, first the linearization of the 

term ݔሶ ሶݔ| | is performed as follows: 
 

ሶݔ ሶݔ| | ൌ
8

ߨ3
߱௡ݔ௞ሶ  ሶ௞ (18)ݔ

 
The linearization in equation (18) allows writing: 

 
1

ߨ2
ln

௞ିଵݔ

௞ାଵݔ
ൌ ߞ ൅

4
ߨ3

ଶܤ

ሺܯ ൅ ሻܣ
 ௞ (19)ݔ

 

Equation (19) can be used to determine the values of ߞ and 
 ,ଶ. Details about this procedure can be found in (Chakrabartiܤ
1994). 

Spectral Analysis 
Another way to determine the damping coefficients and 

natural periods is based on the power spectrum of the signal 
obtained from the decay test. The value of the power spectrum 
in natural frequency determines the damping coefficient as the 
following equations: 
 

ܵሺ߱ଵሻ ൌ ܵሺ߱ଶሻ ൌ
√2
2

ܵሺ߱௡ሻ (20) 

 

ߞ ൌ
1
2

൬
߱ଶ െ ߱ଵ

߱௡
൰ (21) 

 
where ܵሺ߱௡ሻ represents the energy level of the power spectrum 
in the natural frequency (the maximum energy level for 
assumption occurs in the natural frequency in signals of linear 
systems obtained from decay tests), ߱ଵ and ߱ଶ represent the 
frequencies at which the energy level is √2 2⁄  of the energy in 
߱௡. This procedure is reasonable only for narrow band signals, 
but it is very simple to be applied. 

Another kind of spectral analysis uses the Hilbert 
transform as presented in (Huang et al., 1998). The method is 
called Empirical Mode Decomposition (EMD) and through the 
decomposition of the signal in some functions, called Intrinsic 
Mode Functions (IMF), the Hilbert-Huang spectrum is 
obtained with information about the amplitude and frequency 
during time. The information given by HHT can be used by the 
methods explained before providing better results. 

Random Decrement Technique 
This technique considers that the response of the floating 

units is linear and it is subjected to a random excitation, as 
occurs in an irregular wave. Assuming the external force is 
zero-mean, stationary and a Gaussian random process, the 
response will also have these characteristics. 

The technique computes the average of the response 
segments with the same length. The segments are chosen with 
a constant value and with the slope alternating from positive to 
negative. 

The choice of the constant value is a percentage of the 
root-mean-square value and the signal that remains after the 
averages is a decayed oscillation that should be analyzed with 
the methods described above. Details about this method can be 
found in (Yang, et al., 1985). 

 
3. METHOD COMPARISONS 

This chapter presents the different methods to evaluate the 
damping coefficient for floating units. A comparison is made 
using some tests carried out at the IPT towing tank with ITTC-
RS192 scaled model presented in (Rateiro et al., 2010). The 
model was moored in the towing car by “quasi” horizontal 
mooring lines. The lines did not provide a significant restoring 



 4 Copyright © 2010 by ASME 

force for vertical motions (heave, roll and pitch) and negligible 
damping forces. On the other hand, a group of risers was 
located on board of the model in order to represent its influence 
on the damping and restoring forces. Also, the current influence 
on the dynamic behavior was verified by tests with and without 
current. Figure 1 presents the test setup overview. 

 

 

Figure 1 –Model test overview [(Rateiro et al., 2010)]. 
 
Table 1 presents the main ITTC dimensional properties in 

the real and model scale. 
 

Table 1 – ITTC RS-192 main properties 

 
 

Mainly, the roll decay tests were chosen for comparison 
because this motion was more affected by external agents: 
current and risers. Next, each method is applied to different test 
conditions, and the advantages and disadvantages for each 
technique are presented. 

The analyses were performed for three conditions: 
 Condition 1: Without risers and no current; 
 Condition 2: With risers and no current; 
 Condition 3: With risers and current. 

Exponential, Linear and Quadratic Fit  
The exponential fit is a method commonly used to 

determine the damping coefficient used on the linear motion 
presented in equation (2). 

Figure 2 presents the sway decay test for the ITTC model 
(dashed line) and a numerical simulation represented by linear 
simulation using exponential fit (solid line). The comparison of 
the motions showed a good agreement between the decay test 
signal and the numerical simulation. It is possible to note that 
the exponential fit undergoes almost all extreme points. This 
fact is explained due to the linear behavior of the sway motion 
for this platform, which confirms the coherence of using the 
damping in linear form for this case. 
 

 
Figure 2 - ITTC sway decay test vs Exponential fit for 

condition 1 
 
However, if the system has a non-linear behavior, this 

method generally underestimates the viscous damping effects 
and the simulation decays more slowly than in the effective 
decay test signal. 

In Figure 3, the differences between a linear simulation 
and the roll decay test are presented. It is possible to see that 
the simulation results (solid line) are larger than the decay test 
ones (dashed line), this fact can be explained by the non-linear 
behavior of this motion that implies a non-linear damping 
behavior. 

 

 

Figure 3 - ITTC Roll decay test for condition 1 using an 
exponential fit 

 
Although it is not recommended to use the linear method 

for non-linear systems, it is possible to employ the linear 
equation (8), which considers logarithmic decrement for each 
motion amplitude using different damping levels. Figure 4 
presents the results of linear damping level for different 
amplitude motions; the test used is the same presented in the 
example in Figure 3. It is possible to note that the damping 
level is larger for larger motion amplitude, which confirms that 
the damping level is dependent on the motion amplitude, i.e. 
 .ሻݔଵሺܤ

  Main Dimensions
 real scale model scale

Total lenght 115 m 109.52 cm
Beam 75 m 71.43 cm
Draft 27 m 25.71 cm
Height 43 m 40.95 cm
Displecement 37413 ton 32.32 kg
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Figure 4 – Different damping levels for roll in condition 1 
 
In general, the use of linear motion equation allows 

predicting the Response Amplitude Operator (RAO) once the 
wave exciting force is determined. The region most influenced 
by the damping force is the one close to the natural period. As 
seen previously, the damping level can be different for each 
motion amplitude; this fact implies a correct adjustment of 
RAO for a specific sea condition. Generally, the significant 
amplitude of motion is used to take the damping coefficient 
using the method presented in Figure 4. 

An example of numerical RAO curve adjusted for two 
damping levels is presented in Figure 5; the tests were 
performed for heave motion. The RAO results from transient 
wave tests (thin line) and regular waves (points) are also 
presented in Figure 5. The values of linear damping used to 
adjust the RAO curve were ߞ ൌ 3% and ߞ ൌ 5% for RAO 
obtained from transient wave tests and regular wave tests, 
respectively. This difference is due to the different motion 
amplitudes for each test, in which the larger motions in the 
regular wave tests imply a larger linear damping coefficient. 
The use of different damping levels showed to be satisfactory 
in this example case to adjust the RAO curve. 

 

 

Figure 5 – Comparison of different damping levels in ITTC 
Heave RAO for condition 1 

 
The example in Figure 3 did not agree very well with the 

linear damping simulation; therefore, the quadratic damping 

can be used. Non-linear systems can be more adequately 
represented by quadratic damping behavior, in which the 
damping effect should be separated in two parts (ܤଵ and ܤଶ) 
and can represent different amplitude levels. The correct 
evaluation is to simulate equation (16) and to verify the result 
with the model test. The linearization proposed in equation 
(19) is presented in Figure 6 for the roll decay in condition 1, 
the same decay test presented in Figure 3. The linear fit for this 
extinction curve results in a ߞ ൌ 1.8% and ܤଶ/ሺܯ ൅ ሻܣ ൌ
0.01. 

 

 

Figure 6 - Quadratic Fit for roll decay for condition 1 
 
In Figure 7, the quadratic damping simulation and the roll 

decay test are compared for condition 1. The comparison 
shows a good agreement between them. It should be noted in 
the difference between the ߞ that value decreases from 2.6% to 
1.8%, in which this term represents the linear component of 
damping forces. 
 

 

Figure 7 – ITTC Roll decay test for condition 1 using a 
quadratic fit 

 
An interesting result obtained from the use of quadratic 

damping simulation is the comparison of the influence of the 
risers on the damping forces. As seen in Figure 8, the presence 
of the risers increases the term ܤଶ/ሺܯ ൅  ሻ from 1% to almostܣ
10%, for roll tests performed in condition 2; this increases 
occurred in the quadratic component of damping, i.e. the 
component that depends on ݔሶ ሶݔ| |. It is important to highlight 
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that the quadratic fit, in this case, still yields a coherent 
numerical simulation. 

 

Figure 8 – ITTC Roll decay test for condition 2 using a 
quadratic fit 

 

Spectral Analysis 
The spectral analyses are complimentary techniques used 

in the damping coefficients evaluation. Two methods, the FT 
and HHT are compared here. The FT is easy implemented and 
there are many codes ready to use. However, there is a problem 
with broadband signal; for example, in signals in which two 
frequencies are close, it is hard to define the main frequency. 
The HHT is hard to implement and the definition of the IMF is 
affected by the signal length. There is the advantage of 
obtaining the instantaneous amplitude to create an extinction 
curve not only with the signal peaks using HHT. Thus, all other 
methods can be applied to evaluate the damping coefficient. 
Also, it is able to separate time scales and to verify if the 
system has some coupling. 

The comparison was made for a roll decay signal carried 
out for a condition with current and risers and it is presented in 
Figure 9. Note that for this particular example, the 
implementations of an exponential fit or even a quadratic fit are 
not straightforward. The extreme values are not defined with 
the maximum values above zero and the minimum below zero. 
For that reason, the numerical simulation does not agree with 
the model test signal.  

 

 
Figure 9 – ITTC Roll decay for condition 3 

 

The spectral methods where applied to the roll decay tests 
in condition 3, as can be seen in Figure 10 and Figure 11. The 
linear damping simulation was compared to show that this kind 
of simulation does not agree with the model test signal. The 
difficulty in this type of signal is to determine the natural 
frequency, because it has a modulation in time. Figure 10 
shows the comparison of power spectrum obtained from FT 
and HHT. The power spectrum obtained from HHT showed 
that the energy is well defined while the FT one showed a 
broadband spectrum that markedly complicated the natural 
frequency determination.  
 

 

Figure 10 – Comparison of Hilbert-Huang and FFT 
spectrum for the signal in Figure 9 

 

 

Figure 11 - Hilbert-Huang Spectrum for the signal in 
Figure 9 

 
The HHT spectrum presents a frequency-amplitude-time 

plot. Figure 11 shows the HHT spectrum from the example 
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signal in Figure 9. It is possible to observe that the 
instantaneous frequency is not constant. From this result, it can 
be concluded why the linear or even quadratic simulations 
would not agree with the model test. The reason is that both 
methods are based on a single natural frequency, and for the 
same reason, the FT spectrum presented a broadband energy. 

The HHT spectrum is a good way to determine the time 
range at which the decay test is possible to represent the 
phenomena from linear or quadratic simulations. 
 

Random Decrement Technique 
Finally, the damping levels can also be evaluated from 

irregular signals. An example of the RDT is shown in Figure 
12; and in Figure 13, the result of the damping evaluation after 
the use of RDT is presented. It should be noted that the ߞ value 
of 2.2% was close to the roll decay test for condition 1 of 2.6% 
from the exponential fit in Figure 3 and 1.8% from the 
quadratic fit in Figure 7. The value obtained from RDT is most 
realistic because the floating unit, in an irregular wave, has 
motion behavior similar to that in sea conditions, thus the 
damping level considers the different motion amplitudes in this 
case. 
 

 
Figure 12 – Roll motion at irregular waves for condition 1 

with RDT amplitudes  
 

 

Figure 13 – Random Decrement Technique for signal in 
Figure 12 

 

4. CONCLUSION 
The method to obtain external damping for numerical 

models should be applied to adjust damping coefficients for 
each degree of freedom. The paper presented some methods 
using as an example mainly the roll motion for the ITTC-
RS192 model test from (Rateiro et al., 2010). 

The exponential fit is a coherent choice when the system 
damping is purely linear. For quadratic damping, the option is 
the linearization for each amplitude level or a quadratic fit for 
the extinction curve. 

Also presented is how to evaluate the signal characteristics 
through spectral analysis in cases where the motion analysis is 
coupled with other effects, such as the presence of current and 
risers, in which the HHT spectrum using EMD is a better 
alternative for identifying the phenomenon. 

In summary, the paper presented different methods to 
evaluate the damping coefficients for different motion 
behaviors. It is important to help designers to choose the best 
alternative in motion simulation in preliminary phases in a 
project. 

 
REFERENCES 

[1] Chakrabarti, S.K., 1994, Offshore Structure Modeling, 
Advanced Series on Ocean Engineering, Volume 9, 
pp.445-451 

[2] Gaspar, H.M., Fucatu, C., Nishimoto, K., 2009, 
Design of Conceptual Offshore Systems based on 
Numerical Model-Basin Simulations, IMDC2009 

[3] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, 
H. H., Zheng, Q., Yen, N-C., Tung, C. C., & Liu, H. 
H., 1998, The Empirical Mode Decomposition and the 
Hilbert Spectrum for Nonlinear and Non-stationary 
Time Series Analysis, Proceedings of the Royal 
Society London A, pp. 903-995. 

[4] Lewis, E.V., Principle of Naval Architecture, 1989, 
Motion in Waves and Controllability, SNAME, 
Volume 3, pp. 73-83 

[5] Malta, E.B., Cueva, M., Nishimoto, K., Gonçalves, 
R.., Masetti, I.Q., 2006, Numerical Moonpool 
Modeling, OMAE2006-92456 

[6] Malta, E.B., Rampazzo, F.P., Cruz, R.E., Oliveira, 
A.C., Nishimoto, K., 2009, FPSO and TLWP 
interacting at a reduced distance for dry tree 
completion system, OMAE2009-79098 

[7] Rateiro, F., Malta, E.B, Fujarra, A.L.C., Vieira, D.P., 
Nishimoto, K., 2010, Investigation on the effects of 
risers in the dynamics of floating systems 
OMAE2010-20408 

[8] Yang, J.C.S., Marks, C.H., Jiang, J., Chen, D., Elahi, 
A., Tsai, W., Determination of fluid damping using 
random excitation, Journal of Energy Resources 
Technology, ASME, Vol. 107, June 1985, pp. 220-225 

8000 8100 8200 8300 8400 8500
-4

-3

-2

-1

0

1

2

3

4

time [s]

ro
ll 

an
g

le
 [

d
eg

re
e]

Signal
Selected Amplitude x

s

4350 4400 4450 4500 4550 4600 4650

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

time [s]

ro
ll 

an
g

le
 [

d
eg

re
e]

Signal
Extremas
Num. Simulation eq.(2)
=2.3% Tn=38.47s


